
Package: ADMUR (via r-universe)
September 13, 2024

Version 1.0.3.9005

Date 2023-09-06

Title Ancient Demographic Modelling Using Radiocarbon

Maintainer Adrian Timpson <a.timpson@ucl.ac.uk>

Depends R (>= 3.5.0)

Imports graphics, stats, methods, mathjaxr

Suggests DEoptimR, knitr, rmarkdown, scales

Description Statistical tools to directly model underlying population
dynamics using date datasets (radiocarbon and other). Various
model structures can be tested including Continuous Piecewise
Linear (CPL) models that are flexible to estimate any complex
population dynamics, Uniform, Exponential, Gaussian, Cauchy,
Sinusoidal, Logistic and Power law. Bayesian parameter
estimates of population models. Taphonomic loss included
optionally as a power function. Model comparison framework
using BIC. Package also calibrates 14C samples, generates
Summed Probability Distributions (SPD), and performs SPD
simulation analysis to generate a Goodness-of-fit test for the
best selected model. Details about the method can be found in
Timpson A., Barberena R., Thomas M. G., Mendez C., Manning K.
(2020)
<https://royalsocietypublishing.org/doi/10.1098/rstb.2019.0723>.

License GPL-3

URL https://github.com/UCL/ADMUR

Encoding UTF-8

VignetteBuilder knitr

LazyData true

RdMacros mathjaxr

RoxygenNote 7.1.1

Repository https://ucl.r-universe.dev

RemoteUrl https://github.com/ucl/admur

1

https://royalsocietypublishing.org/doi/10.1098/rstb.2019.0723
https://github.com/UCL/ADMUR

2 Contents

RemoteRef HEAD

RemoteSha 838f661049b15cfcb514105bbf7ed900aa2e71ea

Contents

ADMUR . 3
bluhm2421 . 3
bryson1848 . 4
checkData . 4
convertPars . 5
CPLparsToHinges . 7
data1 . 8
data2 . 8
data3 . 9
data4 . 9
estimateDataDomain . 10
getModelChoices . 11
intcal13 . 13
intcal20 . 13
loglik . 14
makeCalArray . 15
mcmc . 16
objectiveFunction . 18
phaseCalibrator . 19
plotCalArray . 20
plotPD . 21
plotSimulationSummary . 22
relativeRate . 23
rollmean . 24
SAAD . 25
shcal13 . 26
shcal20 . 26
simulateCalendarDates . 27
SPDsimulationTest . 28
summedCalibrator . 29
summedCalibratorWrapper . 31
summedPhaseCalibrator . 32
toy . 33
uncalibrateCalendarDates . 34

Index 35

ADMUR 3

ADMUR ADMUR R package

Description

ADMUR: Ancient Demographic Modelling Using Radiocarbon

Tools to directly model and compare the underlying dynamics of prehistoric population change
using radiocarbon date datasets.

Details

Package to model population dynamics from anthropogenic datasets of dates such as radiocarbon
dates. Provides tools to perform and compare three modelling approaches:

1. Directly modelling the underlying population dynamics using common parameteric models,
including uniform, gaussian, exponential, logistic, sinusoidal, cauchy, power, etc.

2. Directly modelling the underlying population dynamics using a Continuous Piecewise Linear
(CPL) model framework, including estimating the dates and magnitude of demographic events
(hinge points).

3. Directly modelling the underlying population dynamics using an independent timeseries.

4. Summed Probability Distribution (SPD) generation, and simulation testing. Permits the rejection
of a null hypothesis.

Tools to estimate Maximum likelihood; Goodness of Fit tests; model comparison.

References

’Directly modelling population dynamics in the South American Arid Diagonal using 14C dates’
by Adrian Timpson, Ramiro Barberena, Mark G. Thomas, César Méndez and Katie Manning, pub-
lished in Philosophical Transactions of the Royal Society B, 2020. https://royalsocietypublishing.org/doi/10.1098/rstb.2019.0723

’ADMUR: Ancient Demographic Modelling Using Radiocarbon. Adrian Timpson. University Col-
lege London. Research Department of Genetics, Environment and Evolution (GEE), Darwin Build-
ing, Gower Street, London, WC1E 6BT. 2020 https://github.com/UCL/ADMUR

bluhm2421 Radiocarbon dataset from Bluhm and Surovell 2018

Description

The 14C dataset used by Bluhm and Surovell in ’Validation of a global model of taphonomic bias
using geologic radiocarbon’, Quaternary Research 2018. Data provided from Supplementary ma-
terials originally comprised 2457 rows, but 36 rows (dates(have no mean or SD (only a minimum
age) and have been excluded from this data frame. Furthermore, 25 rows (dates) have to SDs (+ve
and -ve), which have been changed to a single SD for this dataset by taking the mean average.

https://www.cambridge.org/core/journals/quaternary-research/article/abs/validation-of-a-global-model-of-taphonomic-bias-using-geologic-radiocarbon-ages/42E38E070B2B813D55BCEE8D9DC0DF93#supplementary-materials
https://www.cambridge.org/core/journals/quaternary-research/article/abs/validation-of-a-global-model-of-taphonomic-bias-using-geologic-radiocarbon-ages/42E38E070B2B813D55BCEE8D9DC0DF93#supplementary-materials

4 checkData

Usage

bluhm2421

Format

A data frame comprising 2421 rows and 4 columns.

bryson1848 Radiocarbon dataset from Bryson et al. 2006

Description

The 14C dataset used by Surovell et al. in ’Correcting temporal frequency distributions for tapho-
nomic bias’, Journal of Archaeological Science 2009. Data was originally published by Bryson et
al. in ’A calibrated radiocarbon database of late Quaternary volcanic eruptions’, Earth Discussions,
2006. Bryson et al. source data contains two data tables. The second comprises 173 rows of dates
missing their standard deviations. Instead this data frame corresponds to Brysons first table com-
prising 1848 rows. However, these are often an amalgamation of several individual radiocarbon
dates which cannot be reverse-engineered to obtain the individual dates. Therefore we assume each
row represents a unique phase.

Usage

bryson1848

Format

A data frame comprising 1848 rows and 8 columns.

checkData Checks a dataset for obvious clangers

Description

Performs some rudimentary sanity checks on a radiocarbon (or other) dataset

Usage

checkData(data)

Arguments

data A dataframe of 14C dates. Requires ’age’ and ’sd’, and at least one of ’site’ and
’phase’. Optional ’datingType’ to include ’14C’ and anything else.

http://www.electronic-earth-discuss.net/1/123/2006/eed-1-123-2006-supplement.zip

convertPars 5

Details

Performs some rudimentary checks on the radiocarbon dataset, ensuring structure is as required,
ages and sds look vaguely sensible etc. This is no substitute for poor data hygiene, and the analyst
should of course have a toolkit of many other checks, e.g., to avoid duplicate labcodes.

Value

NULL

Examples

checkData(SAAD)

convertPars Converts parameters to x,y coordinates (date and pdf) that describe a
model

Description

Converts either a vector of parameters, or a matrix of many parameter sets to model x,y coordinates
(date and pdf)

Usage

convertPars(pars, years, type, timeseries = NULL)

Arguments

pars Either a numeric vector (one parameter set), or a matrix of several parameter
sets (one set per row).

years A vector of years.

type Choose from the following currently available models. Composite models can
be achieved using a vector of more than one type. For example, c(’norm’,’power’)
will be a composite model, where the first two parameters are the mean and SD,
the 3rd and 4th parameters determine the power distribution component, for ex-
ample if modelling taphonomy.

timeseries A data frame containing names x and y (date and pdf) must be provided as the
timeseries, only if type is ’timeseries’. If ’type’ is anything else, timeseries is
not required (default = NULL).

Details

Converts model parameters into a timeseries. For example, a parameter search will yield either a
single set of parameters, or a matrix with one parameter set per row (such as the ’res’ value from
mcmc). Either can be handed directly to this function. The structure of the output differs depending
on if converting a vector or matrix.

6 convertPars

Examples

a random 6-CPL parameter set
pars <- runif(11)
x <- convertPars(pars=pars, years=5500:7500, type='CPL')

a matrix of 5 random 6-CPL parameter sets
pars <- matrix(runif(11*5), 5, 11)
x <- convertPars(pars=pars, years=5500:7500, type='CPL')

a random exponential parameter
pars <- runif(1, -0.01, 0.01)
x <- convertPars(pars=pars, years=5500:7500, type='exp')

a matrix of 5 random exponential parameter sets
pars <- matrix(runif(5, -0.01, 0.01), 5, 1)
x <- convertPars(pars=pars, years=5500:7500, type='exp')

a random Gaussian parameter pair (mean, sd)
pars <- runif(2, c(6000,200), c(7000,1000))
x <- convertPars(pars=pars, years=5500:7500, type='norm')

a combination model of a Gaussian (parameters = mean, sd),
and a power model assumed to be a taphonomic effect (parameters = b,c).
pars <- runif(4, c(6000,200,0,-3), c(7000,1000,20000,0))
x <- convertPars(pars=pars, years=5500:7500, type=c('norm','power'))

5 combination models of a Gaussian (parameters = mean, sd),
and a power model assumed to be a taphonomic effect (parameters = b,c).
pars <- t(matrix(runif(4*5, c(6000,200,0,-3), c(7000,1000,20000,0)),4,5))
x <- convertPars(pars=pars, years=5500:7500, type=c('norm','power'))

a single random Cauchy parameter pair (location, scale)
pars <- runif(2, c(6000,200), c(7000,1000))
x <- convertPars(pars=pars, years=5500:7500, type='cauchy')

a combination model of a Cauchy (parameters = location, scale),
and a power model assumed to be a taphonomic effect (parameters = b,c).
pars <- runif(4, c(6000,200,0,-3), c(7000,1000,20000,0))
x <- convertPars(pars=pars, years=5500:7500, type=c('norm','power'))

a single random logistic parameter pair (k, x0)
pars <- runif(2, c(0,6000), c(0.01,6500))
x <- convertPars(pars=pars, years=5500:7500, type='logistic')

a combination model of a logistic (parameters = k, x0),
and a power model assumed to be a taphonomic effect (parameters = b,c).
pars <- runif(4, c(0,6000,0,-3), c(0.01,6500,20000,0))
x <- convertPars(pars=pars, years=5500:7500, type=c('logistic', 'power'))

a single random sinewave parameter set (f,p,r)
f <- 1/runif(1,200,1000)
p <- runif(1,0,2*pi)

CPLparsToHinges 7

r <- runif(1,0,1)
x <- convertPars(pars=c(f,p,r), years=5500:7500, type='sine')

a combination model of a sinewave (parameters = f,p,r),
and a power model assumed to be a taphonomic effect (parameters = b,c).

f <- 1/runif(1,200,1000)
p <- runif(1,0,2*pi)
r <- runif(1,0,1)
b <- runif(1,0,20000)
c <- runif(1,-3,0)
x <- convertPars(pars=c(f,p,r,b,c), years=5500:7500, type=c('sine','power'))

although a uniform distribution has no parameters, a pdf can still be generated:
pars must be set to NA
x <- convertPars(pars=NA, years=5500:7500, type='uniform')

a uniform combined with a power model (assumed to be a taphonomic effect):
the parameter for the uniform component must be set to NA
pars <- c(NA, runif(2, c(0,-3), c(20000,0)))
x <- convertPars(pars=pars, years=5500:7500, type=c('uniform','power'))

CPLparsToHinges Converts CPL parameters (0 to 1) into hinge (x,y) coordinates (date
and pdf) that describe a model

Description

Converts either a vector of parameters, or a matrix of many parameter sets to CPL-model hinges
(date and pdf coordinates)

Usage

CPLparsToHinges(pars, years)

Arguments

pars Either a vector of one parameter set, or a matrix of several parameter sets (one
set per row).

years A vector of years.

Details

The CPL model requires pars to be of odd length, each between 0 and 1. A n-CPL model has 2n−1
parameters (n− 1 x-parameters and n y-parameters) that are mapped to n+ 1 PD coordinates (x,y
pairs) using a modified Stick Breaking Dirichlet Process. The first and last x-coordinate are set
as xmin and xmax, and the remaining internal x-coordinates are converted from their respective
x-parameters using the Beta distribution CDF (where α = 1 and β = the number of pieces still

8 data2

to be broken). The y-parameters (between 0 and 1) are converted to y-coordinates in two steps.
Firstly, they are mapped from the parameter range (0,1) to the coordinate range (0, ∞) using the
formula 1

(1−y)2 −1, and the single remaining y-coordinate is set as 1
(1−0.5)2 −1. Secondly, they are

normalised by the total area under the curve, calculated as the sum of the areas under all n pieces:

Area =

n∑
i=1

(
yi + yi+1

2
)(xi+1 − xi)

Examples

convert a single random 6-CPL parameter set
x <- CPLparsToHinges(pars=runif(11), years=5500:7500)

data1 Toy radiocarbon dataset

Description

Data frame comprising a randomly generated 14C dataset. The true data generation process is
deliberately left to the imagination

Usage

data1

Format

A data frame comprising 100 rows and 4 columns.

data2 Toy radiocarbon dataset

Description

Data frame comprising a randomly generated 14C dataset. The true data generation process is
deliberately left to the imagination

Usage

data2

Format

A data frame comprising 100 rows and 4 columns.

data3 9

data3 Toy radiocarbon dataset

Description

Data frame comprising a randomly generated 14C dataset. The true data generation process is
deliberately left to the imagination

Usage

data3

Format

A data frame comprising 100 rows and 4 columns.

data4 Toy radiocarbon dataset

Description

Data frame comprising a randomly generated 14C dataset. The true data generation process is
deliberately left to the imagination

Usage

data4

Format

A data frame comprising 100 rows and 4 columns.

10 estimateDataDomain

estimateDataDomain Estimates the calendar date domain of a 14C dataset

Description

Estimates the approximate date range of a 14C dataset, in calendar time

Usage

estimateDataDomain(data, calcurve)

Arguments

data A dataframe of 14C dates. Requires ’age’ and ’sd’, and at least one of ’site’ and
’phase’. Optional ’datingType’ to include ’14C’ and anything else.

calcurve A calibration curve object. Choose from intcal20 (default), shcal20, intcal13 or
shcal13.

Details

Since dates are derived from normal (or log normal) distributions, they have no absolute cut off
point. However, in practice the tail of a PDF rapidly becomes vanishingly small, so a date range
can be estimated using an arbitrarily large interval (0.000001 to 0.999999) of the cumulative distri-
bution.

In practice however, the date range chosen to model should not be selected using this function, but
carefully chosen to ensure the date range is fairly represented by the data set.

Therefore this function should only be used to select a date range to model if simulating a tiny
sample size, to ensure the modelled range does not exceed the date domain of the data.

Value

Returns a vector of two calendar dates BP.

Examples

a single date within the 14C range 5000 to 10000
data <- data.frame(

age = round(runif(1,5000,10000)),
sd = 3,
datingType = '14C'
)

estimateDataDomain(data, calcurve=intcal20)

50 dates within the 14C range 5000 to 10000
data <- data.frame(

age = round(runif(50,5000,10000)),
sd = rep(50,50),
datingType = rep('14C',50)

getModelChoices 11

)
estimateDataDomain(data, calcurve=intcal20)

getModelChoices Lists currently available models

Description

Lists currently available models, the number of parameters, and a brief description

Usage

getModelChoices()

Details

All models are truncated, such that the total area between xmin and xmax (the date range of the
argument ’years’) equals 1.

• ’CPL’ is a Continuous Piecewise Linear model. It must have an odd number of parameters,
each with a value between 0 and 1. A n-CPL model has 2n−1 parameters (n−1 x-parameters
and n y-parameters) that are mapped to n+1 PD coordinates (x,y pairs) using a modified Stick
Breaking Dirichlet Process. The first and last x-coordinate are set as xmin and xmax, and the
remaining internal x-coordinates are converted from their respective x-parameters using the
Beta distribution CDF (where α = 1 and β = the number of pieces still to be broken). The
y-parameters (between 0 and 1) are converted to y-coordinates in two steps. Firstly, they
are mapped from the parameter range (0,1) to the coordinate range (0, ∞) using the formula

1
(1−y)2 − 1, and the single remaining y-coordinate is set as 1

(1−0.5)2 − 1. Secondly, they are
normalised by the total area under the curve, calculated as the sum of the areas under all n
pieces:

Area =

n∑
i=1

(
yi + yi+1

2
)(xi+1 − xi)

• ’uniform’ is a uniform model requiring no parameters. I.e. the argument pars must be NULL,
and trivially the PDF is:

1

xmax − xmin

• ’norm’ is a truncated Gaussian model. The two parameters are used as µ and σ in the formula
for a truncated Normal distribution, the PDF of which is calculated in two steps. Firstly, the
PDF of an ordinary Normal distribution is calculated. Secondly, it is normalised by the area
within the date range.

• ’exp’ is a truncated exponential model of the form f(x) = aerx where x = years. The single
parameter is used as the rate exponent r which gives growth through time if r > 0, decline if
r < 0, and constant if r = 0. The PDF is as follows. Note the a parameter cancels out:

−re−rx

e−rxmax − e−rxmin

12 getModelChoices

• ’logistic’ is a truncated logistic model. The two parameters are used as the rate k and centre
x0 where the PDF is:

k

(e−k(x0−x) + 1) ln
(

e−k(x0−xmin)+1
e−k(x0−xmax)+1

)
• ’sine’ is a truncated sinewave model. The usual function to describe a sine wave is f(x) =
A sin(2πfx+ p), where A is the amplitude, f is the frequency (cycles per year), and p is the
cycle position (in radians) at x = 0, and therefore oscillates above and below the x-axis.
However, a sinusoidal PDF must by definition always be non-negative, which can conceptually
be considered as a sine wave stacked on top of a uniform distribution with a height A + k,
where k >= 0. Since the PDF is f(x) divided by the area below the curve, A and k simplify
to a single parameter r that determines the relative proportions of the uniform and sinusoidal
components, such that:
when r = 0 the amplitude of the sine wave component is zero, and the overall PDF is just a
uniform distribution between min and max.
when r = 1 the uniform component is zero, and the minima of the sine wave touches zero.
This does not necessarily mean the PDF minimum equals zero, since a minimum point of the
sine wave may not occur with PDF domain (truncated between min and max).
Therefore the formula for the PDF is:

1 + sin(2πfx+ p)− ln(r)

(xmax − xmin)(1− ln(r)) + (1
2πf)[cos(2πfxmin − p)− cos(2πfxmax − p)]

where x = years, and xmin and xmax determine the truncated date range;
f determines the numeric frequency (cycles per unit x);
p determines the cycle position (in radians) at x = 0, and must be a numeric between 0 and
2π;
r determines how flat the distribution is, and must be a numeric between 0 and 1.

• ’cauchy’ is a truncated Cauchy model. The two parameters are used as x0 (location) and γ
(scale) in the formula for a truncated Cauchy distribution. The PDF is as follows where x =
years:

1

γ[1 + (x−x0

γ)2][arctan(x0−xmin

γ)− arctan(x0−xmax

γ)]

• ’power’ is a truncated Power function model of the form f(x) = a(b+ x)c where x = years.
The PDF is as follows. Note the a parameter cancels out:

(c+ 1)(b+ x)c

(b+ xmax)(c+1) − (b+ xmin)(c+1)

• ’timeseries’ is a custom model of any complexity, typically derived from an independent
source. For example, a timeseries of the proportion of forest to grassland through time, derived
from pollen data. This requires a single parameter r to scale the PDF.

Examples

getModelChoices()

intcal13 13

intcal13 Northern hemisphere 2013 calibration curve

Description

Northern hemisphere 2013 calibration curve

Usage

intcal13

Format

A data frame comprising 5141 rows and 3 columns: cal BP, 14C BP, +/- Error.

Source

Atmospheric data from Reimer et al (2013). Obtained from the raw intcal13.14c file downloaded
from http://radiocarbon.webhost.uits.arizona.edu/node/19

References

Reimer PJ, Bard E, Bayliss A, Beck JW, Blackwell PG, Bronk Ramsey C, Buck CE, Cheng H,
Edwards RL, Friedrich M, Grootes PM, Guilderson TP, Haflidason H, Hajdas I, Hatte C, Heaton
TJ, Hogg AG, Hughen KA, Kaiser KF, Kromer B, Manning SW, Niu M, Reimer RW, Richards DA,
Scott EM, Southon JR, Turney CSM, van der Plicht J. Radiocarbon 55(4). DOI: 10.2458/azu_js_rc.55.16947

intcal20 Northern hemisphere 2020 calibration curve

Description

Northern hemisphere 2020 calibration curve

Usage

intcal20

Format

A data frame comprising 9501 rows and 3 columns: cal BP, 14C BP, +/- Error.

14 loglik

Source

Atmospheric data from Reimer et al (2020). Obtained from the raw intcal20.14c file downloaded
from http://intcal.org/curves/intcal20.14c

References

Reimer P, Austin WEN, Bard E, Bayliss A, Blackwell PG, Bronk Ramsey C, Butzin M, Cheng H,
Edwards RL, Friedrich M, Grootes PM, Guilderson TP, Hajdas I, Heaton TJ, Hogg AG, Hughen
KA, Kromer B, Manning SW, Muscheler R, Palmer JG, Pearson C, van der Plicht J, Reimer RW,
Richards DA, Scott EM, Southon JR, Turney CSM, Wacker L, Adolphi F, Büntgen U, Capano
M, Fahrni S, Fogtmann-Schulz A, Friedrich R, Köhler P, Kudsk S, Miyake F, Olsen J, Reinig F,
Sakamoto M, Sookdeo A, Talamo S. 2020. The IntCal20 Northern Hemisphere radiocarbon age
calibration curve (0-55 cal kBP). Radiocarbon 62. doi: 10.1017/RDC.2020.41.

loglik Calculates the log likelihood of a population model, given a calibrated
date PD matrix

Description

Calculates the log likelihood of a population model, given a calibrated date PD matrix

Usage

loglik(PD, model)

Arguments

PD A data frame of Probability Distributions (PDs). Each column representing the
PD of a calibrated observation or phase. Row names correspond to the calendar
years BP. This data frame can be generated by phaseCalibrator

model A data frame containing the columns ’pdf’ representing a hypothesised popu-
lation Probability Density Function; and ’year’ corresponding to the calendar
years BP.

Details

Row names of both PD and model arguments must exactly match, since the probability of each
phase given the model is calculated numerically.

Value

Returns a single numeric log likelihood.

makeCalArray 15

Examples

calibrate a dataset comprising just two phases
data <- data.frame(age=c(5800, 5100),sd=c(40, 35),phase=c('p1', 'p2'), datingType='14C')
CalArray <- makeCalArray(shcal20, calrange = range(toy$year))
PD <- phaseCalibrator(data, CalArray)

calculate toy model log likelihood
loglik(PD, toy)

makeCalArray Makes a calibration curve probability array

Description

Generates CalArray containing a 2D probability array of the calibration curve

Usage

makeCalArray(calcurve, calrange, inc=5)

Arguments

calcurve A calibration curve object. Choose from intcal20 (default), shcal20, intcal13 or
shcal13.

calrange A vector of two calendar dates BP, giving the calendar range of CalArray. Can
be in either order.

inc Increments to interpolate calendar years. Default = 5

Details

Generates an array of probabilities mapping the calibration curve and its error ribbon.

Each column represents a Gaussian PDF constructed from the C14 date and error of the calibration
curve (typically a column every 5 cal years).

Row names of CalArray are 14C dates, column names are cal dates.

This function is memory and time costly if used to construct the entire 50,000 year range of the
calibration curve at a resolution of 1 cal years, therefore typically used only for a constrained date
range, by specifying calrange.

This array only needs constructing once to generate a Summed Probability Distribution of any
number of calibrated dates, allowing efficient downstream calibration.

Value

Returns a list including:

probs a 2D probability array of the calibration curve
calcurve the calibration curve as provided as an argument
cal a numeric vector of calendar years
inc the resolution of the array in calendar years

16 mcmc

Examples

generate a CalArray of the intcal20 curve covering 5500 calBP to 7000 calBP
x <- makeCalArray(intcal13, c(5500,7000), inc=1)

mcmc Makes a MCMC chain using the Metropolis-Hastings algorithm

Description

Generates a single Markov Chain Monte Carlo using the Metropolis-Hastings algorithm

Usage

mcmc(PDarray,
startPars,
type,
timeseries=NULL,
N=30000,
burn=2000,
thin=5,
jumps=0.02)

Arguments

PDarray A Probability Density Array of calibrated dates, generated by phaseCalibrator
.

startPars A vector of parameter values for the algorithm to start at. Suggest using the
parameters found from a Maximum Likelihood search. Must have an odd length
with values between 0 and 1 for an n-CPL model, or length 1 values between
-0.1 and 0.1 for an exponential model.

type Choose from the following currently available models. Composite models can
be achieved using a vector of more than one type. For example, c(’norm’,’power’)
will be a composite model, where the first two parameters are the mean and SD,
the 3rd and 4th parameters determine the power distribution component, for ex-
ample if modelling taphonomy.

timeseries Only if ’type’ = ’timeseries’, a data frame should be provided containing columns
x and y that define the timeseries as year and value respectively.

N The total number of proposals made, before the chain is reduced for burn-in and
thinning.

burn The number of proposals made at the beginning of the chain to be disregarded
as burn-in.

thin Specifies the proportion of proposals to be disregarded (after burn-in), such that
the default 5 will only keep every 5th proposal.

mcmc 17

jumps Vector that determines the size of the random jump between the last parameters
and the proposed parameters. A smaller value gives a smaller jump. Different
jump values can be provided for each parameter. This can be tuned by observing
how well mixed each parameter is in the chain.

Details

Generates a single MCMC chain using the Metropolis-Hastings algorithm, printing to screen progress
every 1000 proposals. An acceptance ratio of around 0.4 to 0.5 should be sought by adapting the
arguments ’burn’ and ’jumps’. If the acceptance ratio is too low try reducing jump. A larger dataset
will typically require smaller jumps.

Value

Returns a list including:

res A 2D matrix of free parameter values (between 0 and 1) in the chain, after burn-
in and thinning.

all.pars A 2D matrix of free parameter values (between 0 and 1) in the chain of all N
proposals.

acceptance.ratio

The proportion of proposals (after burn-in) that are accepted.

Examples

randomly sample calendar dates from the toy model
set.seed(12345)
N <- 350
cal <- simulateCalendarDates(toy, N)

Convert to 14C dates.
age <- uncalibrateCalendarDates(cal, shcal20)
data <- data.frame(age = age, sd = 50, phase = 1:N, datingType = '14C')

Calibrate each phase, taking care to restrict to the modelled date range
CalArray <- makeCalArray(shcal20, calrange = range(toy$year), inc = 5)
PD <- phaseCalibrator(data, CalArray, remove.external = TRUE)

Run MCMC for a 3-CPL model (5 parameters)
chain <- mcmc(PDarray = PD,
startPars = rep(0.5,5),
type='CPL',
jumps = 0.02)

Run MCMC for a 3-CPL model with taphonomy (5 + 2 parameters)
chain <- mcmc(PDarray = PD,
startPars = c(rep(0.5,5),10000,-1.5),
type=c('CPL', 'power'),
jumps = 0.02)

18 objectiveFunction

objectiveFunction Objective function to be minimised in a search. Returns the negative
log likelihood

Description

Calculates the negative log likelihood of a model given a calibrated date matrix

Usage

objectiveFunction(pars, PDarray, type, timeseries=NULL)

Arguments

pars A numeric vector of parameters.

PDarray A data frame typically generated by phaseCalibrator, such that each column
represents the PD of each calibrated date (or phase), and row names are the
corresponding years.

type Choose from the following currently available models. Composite models can
be achieved using a vector of more than one type. For example, c(’norm’,’power’)
will be a composite model, where the first two parameters are the mean and SD,
the 3rd and 4th parameters determine the power distribution component, for ex-
ample if modelling taphonomy.

timeseries Only if ’type’ = ’timeseries’, a data frame should be provided containing columns
x and y that define the timeseries as year and value respectively.

Details

If type is ’CPL’, pars must be an odd length each between 0 and 1 since parameters correspond to:
(y,x,...y). If type is ’exp’, pars must be a single positive or negative numeric (the exponential rate
can be growth or decay). Typically this parameter should be close to zero (-0.1 to 0.1) to avoid
numbers beyond floating point limits) If type is ’norm’, pars must have length 2 (mean and sd) If
type is ’uniform’, then pars must be NA.

Value

Returns a single value, the negative log likelihood.

Examples

generate a PD array from a handful of dates
data <- subset(SAAD, site %in% c('Carrizal','Pacopampa'))
CalArray <- makeCalArray(shcal13, calrange = c(2000,6000))
PD <- phaseCalibrator(data, CalArray)

the negative log likelihood given some random parameters for a 3-CPL model
pars <- runif(5)

phaseCalibrator 19

objectiveFunction(pars, PD, type='CPL')

the negative log likelihood given a random exponential model
pars <- runif(1, -0.01, 0.01)
objectiveFunction(pars, PD, type='exp')

the negative log likelihood given a random Gaussian model
pars <- c(runif(1, 2000, 6000), runif(1, 100, 1000))
objectiveFunction(pars, PD, type='norm')

the negative log likelihood given a uniform model
objectiveFunction(pars=NA, PD, type='uniform')

the negative log likelihood given a uniform model with taphonomy
pars <- c(NA, runif(1, 0, 20000), runif(1, -3, 0))
objectiveFunction(pars=pars, PD, type=c('uniform','power'))

phaseCalibrator Generates an SPD for each phase in a dataset

Description

Generates a data frame of SPDs, one for each phase

Usage

phaseCalibrator(data, CalArray, width = 200, remove.external = FALSE)

Arguments

data A dataframe of 14C dates. Requires ’age’ and ’sd’, and at least one of ’site’ and
’phase’. Optional ’datingType’ comprising ’14C’ and/or anything else.

CalArray A 2D probability array of the calibration curve generated by makeCalArray
containing row names and column names.

width A timespan in C14 years used to automatically bin dates if they have not been
phased, i.e., ’phase’ is missing from the data. Default = 200.

remove.external

Default FALSE retains the SPDs of all phases, even if some have little or no
probability mass inside the date range. If TRUE, those phases with the majority
of their probability mass outside the date range are removed.

Details

Generates an SPD for each phase using summedCalibrator with the default normalisation = ’stan-
dard’. Returns a data frame of probabilities, with phase names assigned to column names, and
calendar years assigned to row names.

As a minimum requirement the data must include either ’phase’ or ’site’. If ’phase’ is unavailable
the function will automatically use ’site’ to bin the dates into site-phases. This binning is achieved

20 plotCalArray

with a crude algorithm that assigns a date to a bin if it is within 200 years of any other date in
that bin, based on the uncalibrated C14 mean date (non-14C dates are also mapped to 14C time for
the purpose of this binning). The need to bin dates into phases is an important step in modelling
population dynamics to adjust for the data ascertainment bias of some archaeological finds having
more dates by virtue of a larger research interest/budget. This binning algorithm provides a simple
and useful solution to handling large datasets that have not been phased, but is not an alternative to
an OxCal phase model if the objective is to directly estimate phase boundary dates at a specific site.

Optionally ’datingType’ can be provided in the data. Only ’14C’ will be calibrated in the usual way,
anything else is assumed to be provided in calendar time. If ’datingType’ is not provided, all dates
are assumed to be 14C.

Each column of the output data frame is a vector of probabilities representing the SPD of a phase.
However, if the date range used to generate CalArray does not encompass the entire dataset, some
phases will have PD outside the date range, giving a SPD area < 1. This avoids deleterious edge
effects.

If using the output data frame to search for a population model, it is crucial to exclude dates outside
(or mostly outside) the date range. This is achieved with remove.external = TRUE.

Value

Returns a data frame of probabilities. Each column provides the SPD of a phase. Column names
are the phase names, row names are the calendar years.

Examples

CalArray <- makeCalArray(intcal20, calrange = c(9000,11000), inc = 5)

minimum data requirement includes 'mean' and 'sd' and either 'site' or 'phase'
data <- data.frame(age = c(8350,8500,8900,9200),

sd = c(50,50,50,50),
site = c('field','field','field','garden'))

x <- phaseCalibrator(data, CalArray)

notice three phases were automatically generated, each with a total SPD area = 1
colSums(x)*5

in contrast, three dates are specified as coming from the same phase,
and the 'garden.1' phase is partly outside the date range
data <- data.frame(age = c(8350,8500,8900,9480),

sd = c(50,50,50,50),
phase = c('field.1','field.1','field.1','garden.1'))

x <- phaseCalibrator(data, CalArray)
colSums(x)*5

plotCalArray Plots a calibration curve probability array

plotPD 21

Description

Generates a basic image plot of the calibration curve

Usage

plotCalArray(CalArray)

Arguments

CalArray A 2D probability array of the calibration curve generated by makeCalArray,
containing row names and column names.

Details

Plots CalArray, a 2D probability array of the calibration curve.

Time costly if CalArray comprises the entire 50,000 year range of the calibration curve.

Examples

generate a CalArray of the intcal20 curve covering 5500 calBP to 6000 calBP
x <- makeCalArray(calcurve = intcal20, calrange = c(5500,6000), inc = 1)
plotCalArray(x)

plotPD Plots a calibrated PD of a single date, or SPD of multiple dates, or
multiple SPDs

Description

Generates a basic plot of the Probability Distribution of calibrated date, or Summed Probability
Distribution of multiple calibrated dates, or multiple SPDs such as a data frame of phases

Usage

plotPD(x)

Arguments

x A data frame comprising row names of calendar years and optional column
names. For example a one-column dataframe generated by summedCalibrator
or a multi-column dataframe generated by phaseCalibrator

Details

Presents the probability density as a grey polygon.

22 plotSimulationSummary

Examples

data <- data.frame(age=c(9144),sd=c(151))
CalArray <- makeCalArray(intcal20,calrange=c(8000,13000))
cal <- summedCalibrator(data, CalArray)
plotPD(cal)

plotSimulationSummary Plots a summary of the SPD simulation test

Description

Plots the SPD and confidence intervals of simulated SPDs, including regions outside the CI, the
model, and 200 yr rolling mean

Usage

plotSimulationSummary(summary, title=NULL, legend.x=NULL, legend.y=NULL)

Arguments

summary A list of various objects generated by SPDsimulationTest

title A string title for the plot. If NULL a summary is automatically generated. If no
title is preferred, use title = ”.

legend.x The x coordinate for the figure legend.

legend.y The y coordinate for the figure legend.

Details

Default NULL for legend.x and legend.y will automatically add a legend, which may not be ideally
placed to avoid overlapping other components of the plot. To remove the legend, simply place well
outside the boundary.

Examples

summary <- SPDsimulationTest(data=SAAD,
calcurve=shcal20,
calrange=c(2500,14000),
pars=-0.0001674152,
type='exp')

plotSimulationSummary(summary)

relativeRate 23

relativeRate Calculates the relative growth (or decline) rate per generation

Description

Calculates the generational growth/decline rate for a linear piece of a CPL model, or between any
two x,y coordinate pairs

Usage

relativeRate(x, y, generation = 25, N = 1000)

Arguments

x A numeric vector of length 2, giving the start and end date of linear piece, or a
2 column matrix such that each row is a start and end pair.

y The corresponding y values such as PDs, or population size (numeric vector of
length 2), or a matrix such that each row is a start and end pair.

generation Years per generation. Default = 25.

N Number of sections to average the growth rate across.

Details

The ’relative rate’ (growth or decline) of a straight line between two x,y coordinate pairs is the
expected generational growth rate across this line. It is calculated always relative to the larger y-
value, providing a symmetric measure. E.g., the absolute percentage changes from 80 to 100 to 80
are calculated as +20 The expected rate is the mean average of the conventional rates for N equal
sections of the line, as N approaches infinity.

Value

Returns a numeric vector of values between 0 and 100 representing a ’relative percentage rate per
generation’. Negative values indicate a decline through time, positive indicate growth.

Examples

x <- c(5600,5500)
y <- c(75,80)

conventional growth/decline rate per 25 yr generation
100 * exp(log(y[2]/y[1])/((x[1]-x[2])/25)) - 100

relative growth/decline rate per 25 yr generation
relativeRate(x,y)

x <- c(5600,5500)
y <- c(480,75)

24 rollmean

conventional growth/decline rate per 25 yr generation
100 * exp(log(y[2]/y[1])/((x[1]-x[2])/25)) - 100

relative growth/decline rate per 25 yr generation
relativeRate(x,y)

x <- c(5600,5500)
y <- c(480,0)

conventional growth/decline rate per 25 yr generation
100 * exp(log(y[2]/y[1])/((x[1]-x[2])/25)) - 100

relative growth/decline rate per 25 yr generation
relativeRate(x,y)

various random rates between 6000 and 5500 BP
x <- t(matrix(c(6000,5500),2,1000))
y <- matrix(runif(2000),1000,2)
conventional <- 100 * exp(log(y[,2]/y[,1])/((x[,1]-x[,2])/25)) - 100
relative <- relativeRate(x,y)
plot(relative, conventional)

rollmean Rolling mean of a vector of values

Description

Computes the rolling mean of a vector of values x. I.e., the mean of a sliding window k values wide

Usage

rollmean(x, k)

Arguments

x A vector of values.

k Integer width of the rolling window.

Details

Equivalent function to the rollmean function in the zoo package, but much faster.

Value

A vector of rolling means

SAAD 25

Examples

x <- sample(1:1000000)
k <- 10000
rm <- rollmean(x,k)

SAAD Radiocarbon dataset for South American Arid Diagonal (SAAD)

Description

Dataset of terrestrial 14C dates for SAAD. Specified by using data from sites falling within the ge-
ographically contiguous ’Arid’ climatic categories of the SAAD as described in the World Köppen
climate classification (2006)

Usage

SAAD

Format

A data frame comprising 1527 rows and 10 columns

Source

Dataset used in Timpson et al (2020). This is a subset of the larger midholo.csv dataset compiled
and published by Riris and Arroyo-Kalin (2019).

References

Timpson, A., Barberena, R., Thomas, M.G., Méndez, C., Manning, K. 2020 Directly modelling
population dynamics in the South American Arid Diagonal using 14C dates. Philosophical Trans-
actions of the Royal Society B.

Kottek, M., Grieser, J., Beck, C., Rudolf, B. & Rubel, F. 2006 World map of the Köppen-Geiger
climate classification updated. Meteorologische Zeitschrift 15, 259-263.

Riris, P. & Arroyo-Kalin, M. 2019 Widespread population decline in South America correlates with
mid-Holocene climate change. Scientific reports 9, 6850.

26 shcal20

shcal13 Southern hemisphere 2013 calibration curve

Description

Southern hemisphere 2013 calibration curve

Usage

shcal13

Format

A data frame comprising 5141 rows and 3 columns: cal BP, 14C BP, +/- Error.

Source

Atmospheric data from Hogg et al. (2013). Obtained from the raw shcal13.14c file downloaded
from http://radiocarbon.webhost.uits.arizona.edu/node/19

References

Hogg, A.G., Hua, Q., Blackwell, P.G., Niu, M., Buck, C.E., Guilderson, T.P., Heaton, T.J., Palmer,
J.G., Reimer, P.J., Reimer, R.W., 2013. SHCal13 Southern Hemisphere calibration, 0–50,000 years
cal BP, Radiocarbon 55, 1889-1903.

shcal20 Southern hemisphere 2020 calibration curve

Description

Southern hemisphere 2020 calibration curve

Usage

shcal20

Format

A data frame comprising 9501 rows and 3 columns: cal BP, 14C BP, +/- Error.

Source

Atmospheric data from Hogg et al. (2020). Obtained from the raw shcal20.14c file downloaded
from http://intcal.org/curves/shcal20.14c

simulateCalendarDates 27

References

Hogg AG, Heaton TJ, Hua Q, Palmer JG, Turney CSM, Southon J, Bayliss A, Blackwell PG,
Boswijk G, Bronk Ramsey C, Pearson C, Petchey F, Reimer P, Reimer R, Wacker L. 2020. SHCal20
Southern Hemisphere calibration, 0-55,000 years cal BP. Radiocarbon 62. doi: 10.1017/RDC.2020.59

simulateCalendarDates Converts calendar dates to 14C dates

Description

Randomly samples calendar dates from a model, including dates slightly outside the model date
range to avoid edge effects

Usage

simulateCalendarDates(model, n)

Arguments

model A data frame including columns ’year’ and ’pdf’

n The number of dates to sample.

Details

Samples n random calendar dates from a model pdf. This model must be defined in terms of a
PDF vector and the corresponding calendar years. This can be provided at any preferred temporal
resolution. For example, an exponential model can be provided with the PDF in annual intervals,
whilst CPL model needs only the hinge points. convertPars will convert parameters into the
required model format.

Value

Returns a vector of calendar dates

Examples

under a uniform model
model <- convertPars(pars=NA, years=5000:6000,type='uniform')
sims <- simulateCalendarDates(model, 1000)
range(sims)

simulate under an exponential model
model <- convertPars(pars=0.001, years=5000:6000,type='exp')
sims <- simulateCalendarDates(model, 1000)
range(sims)

under a CPL model
model <- convertPars(pars=runif(5), years=5000:6000,type='CPL')

28 SPDsimulationTest

sims <- simulateCalendarDates(model, 1000)
range(sims)

SPDsimulationTest Goodness of Fit test, using SPD simulation

Description

Calculates the data p-value given a model

Usage

SPDsimulationTest(data, calcurve, calrange, pars, type, inc=5, N=20000, timeseries = NULL)

Arguments

data A dataframe of 14C dates. Requires ’age’ and ’sd’, and at least one of ’site’ and
’phase’. Optional ’datingType’ comprising ’14C’ and/or anything else.

calcurve A calibration curve object. Choose from intcal20 (default), shcal20, intcal13 or
shcal13.

calrange A vector of two calendar dates BP, giving the calendar range of CalArray. Can
be in either order.

pars A single vector of one parameter combination.

type Choose from the following currently available models. Composite models can
be achieved using a vector of more than one type. For example, c(’norm’,’power’)
will be a composite model, where the first two parameters are the mean and SD,
the 3rd and 4th parameters determine the power distribution component, for ex-
ample if modelling taphonomy.

inc Increments to interpolate calendar years. Default = 5

N The number of simulations to generate.

timeseries Only if ’type’ = ’timeseries’, a data frame should be provided containing columns
x and y that define the timeseries as year and value respectively.

Details

The returned list provides various summary statistics and timeseries of the observed and simulated
data:

timeseries: a data frame containing various CIs and:

calBP: a vector of calendar years BP.

expected.sim: a vector of the expected simulation (mean average of all N simulations).

local.sd: a vector of the local (for each year) standard deviation of all N simulations.

model: a vector of the model PDF.

summedCalibrator 29

SPD: a vector of the observed SPD PDF, generated from data.

index: a vector of -1,0,+1 corresponding to the SPD points that are above, within or below the 95%
CI of all N simulations.

pvalue: the proportion of N simulated SPDs that have more points outside the 95% CI than the
observed SPD has.

observed.stat: the summary statistic for the observed data (number of points outside the 95% CI).

simulated.stat: a vector of summary statistics (number of points outside the 95% CI), one for each
simulated SPD.

n.dates.all: the total number of dates in the whole data set. Trivially, the number of rows in data.

n.dates.effective: the effective number of dates within the date range. Will be non-integer since a
proportion of some dates will be outside the date range.

n.phases.all: the total number of phases in the whole data set.

n.phases.effective: the effective number of phases within the date range. Will be non-integer since
a proportion of some phases will be outside the date range.

n.phases.internal: an integer subset of n.phases.all that have more than 50% of their total probability
mass within the date range.

The default N = 20000 can be increased if greater precision is required, however this can be very
time costly.

Value

Returns a list. See details.

Examples

trivial example showing a single date can never be rejected under a uniform model:
data <- data.frame(age=6500, sd=50, phase=1, datingType='14C')
x <- SPDsimulationTest(data,
calcurve=intcal20,
calrange=c(6000,9000),
pars=NULL,
type='uniform')

print(x$pvalue)

summedCalibrator Generates a summed probability distribution (SPD) of calibrated
dates

Description

Generates a Summed Probability Distribution (SPD). Handles both C14 and other date types e.g.,
thermoluminescence

30 summedCalibrator

Usage

summedCalibrator(data, CalArray, normalise = 'standard', checks = TRUE)

Arguments

data A dataframe of 14C dates. Requires ’age’ and ’sd’, and at least one of ’site’ and
’phase’. Optional ’datingType’ to include ’14C’ and anything else.

CalArray A 2D probability array of the calibration curve generated by makeCalArray
containing row names and column names.

normalise One of ’none’, ’standard’, or ’full’.

checks Logical, performs various data checks if TRUE. Can be useful to set FALSE to
avoid repetitive warnings if run in a loop.

Details

Uses CalArray once to simultaneously calibrate and sum all 14C dates in data. The result is equiv-
alent to calibrating each date, then summing.

Optionally ’datingType’ can be provided in the data. Only ’14C’ will be calibrated in the usual way,
anything else is assumed to be provided in calendar time. If ’datingType’ is not provided, all dates
are assumed to be 14C.

If normalise is ’none’, the output PD has an area equal to the total number of samples within the
date range. This option is rarely required, but can be useful for example when plotting several SPDs
and would also like to illustrate the relative magnitude of different datasets. However, if the date
range used to generate CalArray does not encompass the entire dataset, some dates will have some
probability mass outside the date range. Therefore the total probability can be non-integer and less
than the sample size.

If normalise is ’standard’, the output PD is normalised by the number of samples, giving an area
equal to 1 provided all samples are within the date range. However, if the date range does not
encompass all samples, some will have some probability mass outside the date range, resulting in
the SPD area being less than 1.

If normalise is ’full’, the output PD has an area equal to 1. An appropriate use includes SPD
simulation testing, where it is important to ensure each simulation has the same area. In contrast,
it would be absurd to apply this full normalisation to the tiny tail of a single date that is otherwise
mostly outside the date range.

Value

Returns a single-column data frame of SPD probabilities. Row names are the calendar years.

Examples

SPD of three 14C dates
CalArray <- makeCalArray(intcal20, calrange=c(9000,10650), inc=1)
data <- data.frame(
age = c(8350,8900,9350),
sd = rep(50,3),
datingType = rep('14C',3)

summedCalibratorWrapper 31

)

with the default normalisation the SPD area is a little under 1
since one date is slighly outside the date range
SPD <- summedCalibrator(data, CalArray)
plotPD(SPD)
sum(SPD)

without normalisation the total area is a little under 3
SPD <- summedCalibrator(data, CalArray, normalise='none')
plotPD(SPD)
sum(SPD)

with full normalisation the total area is exactly 1
SPD <- summedCalibrator(data, CalArray, normalise='full')
plotPD(SPD)
sum(SPD)

summedCalibratorWrapper

Quick calibration of dates, without the need to choose a date range or
generate a CalArray

Description

Wrapper function that easily generates and plots an SPD, at the cost of some user control

Usage

summedCalibratorWrapper(data, calcurve = intcal20, plot = TRUE)

Arguments

data A dataframe of 14C dates. Requires ’age’ and ’sd’.

calcurve A calibration curve object. Choose from intcal20 (default), shcal20, intcal13 or
shcal13.

plot By default (TRUE) will plot the SPD.

Details

Function to easily plot a calibrated Summed Probability Distribution from 14C dates. Automati-
cally chooses a sensible date range and interpolation increments. Uses these to generate CalArray
internally.

Value

Returns a single-column data frame of SPD probabilities. Row names are the calendar years.

32 summedPhaseCalibrator

Examples

SPD of two 14C dates, calibrated through intcal20 (default)
data <- data.frame(
age=c(6562,7144),
sd=c(44,51)
)
x <- summedCalibratorWrapper(data)

one date is not 14C
data <- data.frame(
age = c(6562,7144),
sd = c(44,51),
datingType = c('14C','TL')
)
x <- summedCalibratorWrapper(data)

summedPhaseCalibrator Generates a summed probability distribution (SPD) after phasing
dates

Description

Generates a Summed Probability Distribution (SPD) after phasing dates

Usage

summedPhaseCalibrator(data, calcurve, calrange, inc=5, width=200)

Arguments

data A dataframe of 14C dates. Requires ’age’ and ’sd’, and at least one of ’site’ and
’phase’. Optional ’datingType’ comprising ’14C’ and/or anything else.

calcurve A calibration curve object. Choose from intcal20 (default), shcal20, intcal13 or
shcal13.

calrange A vector of two cal dates, giving the calendar range of CalArray. Can be in
either order.

inc Increments to interpolate calendar years. Default = 5.

width A timespan in 14C years used to automatically bin dates if they have not been
phased, i.e., ’phase’ is missing from the data. Default = 200.

Details

Wrapper function to generate an overall SPD for phased dates. Internally this first generates an SPD
for each phase. Data may be phased already, alternatively if ’phase’ is not provided, this function
will automatically bin dates into phases, see phaseCalibrator. Each phase’s distribution is then
summed, and the final SPD is normalised to unity.

toy 33

Optionally ’datingType’ can be provided in the data. Only ’14C’ will be calibrated in the usual way,
anything else is assumed to be provided in calendar time. If ’datingType’ is not provided, all dates
are assumed to be 14C.

Value

Returns a single-column data frame of SPD probabilities. Row names are the calendar years.

Examples

data <- subset(SAAD, site %in% c('Carrizal','Pacopampa'))
SPD <- summedPhaseCalibrator(data, shcal20, c(2000,6000))
plotPD(SPD)

toy Toy population model

Description

Data frame of a toy population model. Provides a discretised PDF across the time range of 7.5kyr
to 5.5kyr BP. The model PDF outside this range is zero. Comprises two columns: year, pdf

Usage

toy

Format

A data frame comprising 4 rows and 2 columns

Source

Toy used in Timpson et al (2020).

References

Timpson, A., Barberena, R., Thomas, M.G., Méndez, C., Manning, K. 2020 Directly modelling
population dynamics in the South American Arid Diagonal using 14C dates. Philosophical Trans-
actions of the Royal Society B.

34 uncalibrateCalendarDates

uncalibrateCalendarDates

Converts calendar dates to 14C dates

Description

Randomly samples a 14C date from the calibration curve error ribbon, at the corresponding calendar
date

Usage

uncalibrateCalendarDates(dates, calcurve)

Arguments

dates A vector of calendar dates.

calcurve A calibration curve object. Choose from intcal20 (default), shcal20, intcal13 or
shcal13.

Details

Conceptually this can be thought of as the reverse process of calibrating a 14C date into calendar
time, however ’uncalibrating’ is a misnomer as the full calibrated PD is not used. Instead, it uses
a vector of calendar point estimates, and randomly samples 14C dates from the calibration curve
error ribbon, at the corresponding calendar dates. Therefore values will differ each time.

Value

Returns a vector of 14C dates

Examples

uncalibrateCalendarDates(c(4500,5000), shcal20)

note the date outside the calcurve range has a 1 to 1 mapping between cal and c14 time
uncalibrateCalendarDates(c(4500,70000), intcal20)

however, a soft fade is performed between the end of the calcurve and 60000
uncalibrateCalendarDates(c(4500,58000), intcal20)

Index

ADMUR, 3

bluhm2421, 3
bryson1848, 4

checkData, 4
convertPars, 5, 27
CPLparsToHinges, 7

data1, 8
data2, 8
data3, 9
data4, 9

estimateDataDomain, 10

getModelChoices, 11

intcal13, 13
intcal20, 13

loglik, 14

makeCalArray, 15, 19, 21, 30
mcmc, 5, 16
models, 5, 16, 18, 28

objectiveFunction, 18

phaseCalibrator, 14, 16, 18, 19, 21, 32
plotCalArray, 20
plotPD, 21
plotSimulationSummary, 22

relativeRate, 23
rollmean, 24

SAAD, 25
shcal13, 26
shcal20, 26
simulateCalendarDates, 27
SPDsimulationTest, 22, 28

summedCalibrator, 19, 21, 29
summedCalibratorWrapper, 31
summedPhaseCalibrator, 32

toy, 33

uncalibrateCalendarDates, 34

35

	ADMUR
	bluhm2421
	bryson1848
	checkData
	convertPars
	CPLparsToHinges
	data1
	data2
	data3
	data4
	estimateDataDomain
	getModelChoices
	intcal13
	intcal20
	loglik
	makeCalArray
	mcmc
	objectiveFunction
	phaseCalibrator
	plotCalArray
	plotPD
	plotSimulationSummary
	relativeRate
	rollmean
	SAAD
	shcal13
	shcal20
	simulateCalendarDates
	SPDsimulationTest
	summedCalibrator
	summedCalibratorWrapper
	summedPhaseCalibrator
	toy
	uncalibrateCalendarDates
	Index

